
MATH4060 Tutorial 3

9 February 2023

Problem 1 (Exercise 2). Find the order of growth of the following entire functions:

(a) p(z) where p is a polynomial.

(b) f(z) = ebz
n

for b 6= 0.

(c) g(z) = ee
z

.

(a) Assume that p(z) = anz
n + · · ·+ a0 (an 6= 0). We claim that the order of growth is

0. Indeed, for any ρ > 0, we have

|p(z)|
e|z|ρ

≤ an|z|n + · · ·+ |a0|
e|z|ρ

→ 0

as |z| → ∞, so |p(z)| ≤ Aρe|z|
ρ

for some Aρ > 0. Taking infimum implies that ρp = 0.

(b) It is clear that |ebzn | ≤ e|b||z|
n

, so ρf ≤ n. On the other hand, write b = r0e
iθ0 ,

where r0 > 0, and consider z = re−iθ0/n for any r > 0, so that

|f(z)| = |ebz
n

| = er0r
n

.

If |f(z)| ≤ AeB|z|
ρ

, taking r → ∞ in the above shows that this is only possible when
ρ ≥ n. So ρf = n.

(c) For any ρ > 0, we have

lim
x→∞

ee
x

eBxρ
= lim
x→∞

ee
x−Bxρ =∞.

So ρg =∞.

Problem 2 (Exercise 10a). Find the Hadamard product for f(z) = ez − 1.

Method 1: It is easy to see that ρf = 1 and that the zeros of f are an = 2πin, n ∈ Z
(each has order 1). Hadamard’s theorem implies

f(z) = eaz+bz

∞∏
n=1

E1(z/an)E1(z/a−n)

= eaz+bz

∞∏
n=1

(1− z/an)ez/an(1 + z/an)e−z/an

= eaz+bz

∞∏
n=1

(1 + z2/4π2n2).

We want to determine a and b. Note that if z0 is a zero of an entire function f and
f(z) = (z − z0)g(z), then f ′(z0) = g(z0) and f ′′(z0) = 2g′(z0). Here, set z0 = 0 and
f(z) = ez − 1, so f ′(0) = f ′′(0) = 1; write g(z) = eaz+bh(z) = eaz+b

∏∞
n=1 hn(z), where

hn(z) = 1 + z2/4π2n2. Since 1 = f ′(0) = g(0) = eb, we may take b = 0. On the other
hand, we compute that

g′(z)

g(z)
=
aeazh(z) + eazh′(z)

eazh(z)
= a+

h′(z)

h(z)
= a+

∞∑
n=1

h′n(z)

hn(z)
,
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by Proposition 3.2 (ii). Since g(0) = 1 and h′n(0) = 0, we have g′(0) = a. Then
1 = f ′′(0) = 2g′(0) implies that a = 1/2. (In fact, for this example, one could also
deduce that a = 1/2 from

ez/2 − e−z/2 = e(a−1/2)z
[
z

∞∏
n=1

(1 + z2/4π2n2)

]
by observing that the LHS and the bracketed term are both odd functions.)

Method 2: Using the Hadamard product for sine, i.e.

sin z = z

∞∏
n=1

(
1− z2

π2n2

)
= z

∏
n 6=0

E1

(
z

πn

)
,

we have

ez − 1 = ez/2(ez/2 − e−z/2) = 2iez/2 sin(−iz/2)

= 2iez/2(−iz/2)
∏
n 6=0

E1(z/(2πin))

= ez/2z
∏
n 6=0

E1(z/(2πin)).

Problem 3 (Exercise 17b, Pringsheim interpolation formula). Let {ak}∞k=0 be a se-
quence of distinct complex numbers such that a0 = 0 and limk→∞ |ak| = ∞. Given
complex numbers {bk}∞k=0, show that there exists an entire function F that satisfies
F (ak) = bk for all k.

Let E(z) denote a Weierstrass product associated with {ak}. For k ≥ 0, define the
interpolation factors

φk(z) =
E(z)

E′(ak)(z − ak)
.

We claim that φk is well-defined, entire and satisfies φk(aj) = δkj (using the Kronecker
delta notation). Indeed, since the ak’s are distinct, E(z) has simple zeros at the ak’s,
and if E(z) = (z− ak)gk(z), E′(ak) = gk(ak) 6= 0. Hence, φk is well-defined, entire, and
satisfies φk(ak) = 1. If k 6= j, then E(aj) = 0 and aj − ak 6= 0, so φk(aj) = 0.

Next, define

F (z) = b0φ0(z) +

∞∑
k=1

bkφk(z)

(
z

ak

)mk
,

for integers mk ≥ 1 specified as follow: let ck = |bk/E′(ak)| and choose mk ≥ 1 such
that

ck
2mk−1

≤ 1

2k
.

Note that F (ak) = bk for all k by construction. To prove that F (z) is entire, it suffices
to show that the series converges uniformly in every closed disc DR(0). Fix R > 0
and let |E(z)| ≤ BR on |z| ≤ R for some BR > 0. Consider1 K ∈ N such that
|aj | ≥ max{2R,BR} for j ≥ K. For any k ≥ K and |z| ≤ R, we have∣∣∣∣∣∣

∞∑
j=k

bjφj(z)

(
z

aj

)mj ∣∣∣∣∣∣ ≤
∞∑
j=k

BR|z|
(|aj | − |z|)|aj |

cj

∣∣∣∣ zaj
∣∣∣∣mj−1

≤
∞∑
j=k

BRR

RBR

cj
2mj−1

≤
∞∑
j=k

1

2j
=

1

2k−1
→ 0

uniformly in z, as k →∞.

1I slightly simplified the proof that appeared in the tutorial.
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Problem 4 (Exercise 11). Show that if f is an entire function of finite order that omits
two values, then f is a constant.

Suppose f omits the value a ∈ C. Hadamard’s theorem implies that the nowhere
vanishing function f(z) − a = ep(z) for some polynomial p(z). If p is not a constant,
the fundamental theorem of algebra implies that Image(p) = C. Since the exponential
function assumes every nonzero value, f(z) = ep(z) + a can only omit the value a in this
case.
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