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Problem 1 (Exercise 2). Find the order of growth of the following entire functions:
(a) p(z) where p is a polynomial.
(b) f(z) =e"" forb+#0.
(c) g(z) = e

(a) Assume that p(z) = ap2z"™ + -+ + ag (an # 0). We claim that the order of growth is
0. Indeed, for any p > 0, we have
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as |z| = o0, so |p(z)| < A,el*!” for some A, > 0. Taking infimum implies that p, = 0.

(b) Tt is clear that |e®*"| < el’llzI" 'so py < n. On the other hand, write b = rge'®,
where 7o > 0, and consider z = re~*%/™ for any r > 0, so that

If |f(2)| < AePI*I”| taking » — oo in the above shows that this is only possible when
p=>mn. So pr=n.

(c) For any p > 0, we have
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So pg = o0.

Problem 2 (Exercise 10a). Find the Hadamard product for f(z) = e* — 1.

Method 1: It is easy to see that py = 1 and that the zeros of f are a, = 2mwin, n € Z
(each has order 1). Hadamard’s theorem implies
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We want to determine a and b. Note that if 2y is a zero of an entire function f and
f(z) = (2 — 20)9(2), then f'(20) = g(20) and f"(z0) = 2¢'(20). Here, set zp = 0 and
f(z) =e* —1,s0 f'(0) = f"(0) = 1; write g(z) = e**TPh(z) = e®* TP [, hy(2), where
hy(z) = 1+ 2%/47%n?. Since 1 = f'(0) = g(0) = €*, we may take b = 0. On the other
hand, we compute that
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by Proposition 3.2 (ii). Since g(0) = 1 and h/,(0) = 0, we have ¢’(0) = a. Then
1 = f”(0) = 2¢'(0) implies that a = 1/2. (In fact, for this example, one could also
deduce that a = 1/2 from
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by observing that the LHS and the bracketed term are both odd functions.)
Method 2: Using the Hadamard product for sine, i.e.
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we have
e* —1=e*/?(e*/? — e7%/?) = 2ie*/? sin(—iz/2)

= 2ie*/?(~iz/2) [ | E1(z/(2min))
n#0

= e*/2y H E1(z/(2min)).

n#0

Problem 3 (Exercise 17b, Pringsheim interpolation formula). Let {ax}3, be a se-
quence of distinct complex numbers such that ag = 0 and limg_, |ag| = 00. Given

complex numbers {bp}72,, show that there exists an entire function F that satisfies
F(ay) = by, for all k.

Let E(z) denote a Weierstrass product associated with {ar}. For k > 0, define the
interpolation factors
E(z)

We claim that ¢, is well-defined, entire and satisfies ¢ (a;) = dx; (using the Kronecker
delta notation). Indeed, since the ax’s are distinct, F(z) has simple zeros at the ay’s,
and if E(z) = (z — ar)gx(2), E'(ar) = g (ar) # 0. Hence, ¢y, is well-defined, entire, and
satisfies ¢ (ar) = 1. If k # j, then E(a;) = 0 and a; — a # 0, so ¢i(a;) = 0.

Next, define
F(z) = bogo(z +Zbk¢k < > ;

for integers my > 1 specified as follow: let ¢k = |bi/E'(ax)| and choose my > 1 such

that
Ck 1

g1 = gk
Note that F'(ax) = by for all k by construction. To prove that F(z) is entire, it suffices
to show that the series converges uniformly in every closed disc Dr(0). Fix R > 0
and let |E(z)] < Br on |z2| < R for some Bg > 0. Consider! K € N such that
la;| > max{2R, Br} for j > K. For any k > K and |z| < R, we have
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uniformly in z, as k — oo.

11 slightly simplified the proof that appeared in the tutorial.



Problem 4 (Exercise 11). Show that if f is an entire function of finite order that omits
two values, then f is a constant.

Suppose f omits the value a € C. Hadamard’s theorem implies that the nowhere
vanishing function f(z) —a = e?®) for some polynomial p(z). If p is not a constant,
the fundamental theorem of algebra implies that Image(p) = C. Since the exponential
function assumes every nonzero value, f(z) = eP*) +a can only omit the value a in this
case.



